QCM

Entrée

BTS

Présentation rapide

Ce QCM contient deux documents: un document question et un document réponse (1 page A4). Le document question peut-être utilisé comme brouillon par le candidat pour répondre au QCM. Les deux documents sont à rendre mais seul le document réponse est utilisé pour la correction.

Tables des matières de ce QCM

QCM – Document question	3
Thème n°1: Conversion et proportionnalité	
Thème n°2: Problème du 1er degré.	
Thème n°3: Problème du 2nd degré	
Thème n°4: Suite arithmétique et géométrique.	
Thème n°5: Fonction linéaire et affine.	
Thème n°6: Fonction polynôme du second degré	
Thème n°7: Fonction exponentielle et logarithme.	
Thème n°8: Dérivée, primitive et calcul intégral.	
Thème n°9: Statistiques.	
Thème n°10: Point, vecteur et calcul vectoriel.	
OCM – Document réponse	

Matériels autorisés

L'usage de la calculatrice et du formulaire de BAC, qui pourra être fourni, sont autorisés.

Consignes de travail

- 1. Détacher le document réponse. Compléter les indications des en-tête des deux documents.
- 2. L'ordre des thèmes proposés pour répondre au QCM est facultatif. Pour chaque question de chaque thème, utiliser le document question pour trouver la bonne réponse parmi les réponses a) à d) proposées (Elle pourra par exemple être entourée). Il n'y a qu'une seule bonne réponse.
- 3. La validation finale de la réponse se fait dans le premier tableau du document réponse. Le 2nd tableau est réservé au correcteur. **Cocher** d'une manière nette et précise la case associée à la réponse choisie pour chacune des questions de chaque thème. La ligne marquée d'un « C » est réservée au correcteur. **Seul le document réponse sera utilisé pour la correction.** Il appartient donc au candidat de gérer la phase de remplissage du document réponse pendant la durée impartie du QCM.

Durée du QCM

La durée du QCM varie suivant le nombre de thèmes à évaluer en fonction du nombre de thèmes traités dans chaque spécialité. Il faut compter en moyenne une minute par question donc 10 minutes par thèmes abordés.

Barème:

La correction se fait uniquement à partir du document réponse.

Toute réponse juste (J) rapporte 3 points.

Toute réponse fausse (F) rapporte −1 point.

Toute question non répondu (N) rapporte 0 point.

Le nombre total de points peut alors être converti en une note sur 20 pour plus de signification.

QCM – Document question

Thème n°1: Conversion et proportionnalité.

Question n°1: Un milligramme correspond à:

- a) 10^{-3} grammes,
- **b)** 0,01 grammes,
- c) 10^{-1} grammes,
- d) Aucune des trois propositions.

Question n°2: Un kilomètre contient combien de centimètres?

- **a)** 10 000,
- **b)** 10^5 ,
- c) 1 000 000,
- **d)** 10^7 .

Question n°3: 10^{-6} secondes correspondent à:

- a) Une nano-seconde,
- **b)** Une milli-seconde,
- c) Une microseconde,
- d) Aucune des trois propositions.

Question n°4: Un gigawatt correspond à:

- a) 100 kilowatt,
- **b)** 1000 kilowatt,
- **c)** 10^{7} watt,
- d) Aucune des trois propositions.

Question n°5: Sur une carte routière, l'échelle est de 1/200000^{ième}. Cela signifie que 1 cm sur la carte correspondent en réalité à:

- a) 20 km,
- **b)** 2 km,
- c) 200 m,
- **d)** 200 km.

Question n°6: Les voitures « majorettes » sont des reproductions des voitures réelles à l'échelle:

- a) $1/6000^{\text{ième}}$,
- **b)** $1/600^{\text{ième}}$,
- c) un soixantième,
- d) un sixième..

Question n°7: 1 cm² correspond à:

- a) 0.01 m^2 ,
- **b)** 10^{-4} m²,
- c) 10^2 m^2 ,
- **d)** 10000 m^2 .

Question n°8: Un champ de 10 hectares (un hectare étant une surface carré de 100 m de coté) représente une surface totale de:

- **a)** 1 km²,
- **b)** 10 km^2 ,
- c) 0.1 km^2 ,
- **d)** Aucune des trois propositions.

Question n°9: Comme un litre correspond à un volume de 1dm³, un décilitre correspond à un volume de:

- **a)** 1000 mm³,
- **b)** Cent mille mm³,
- **c)** 10^7 mm^3 ,
- **d)** Un milliard de mm³.

Question n°10: Avec le taux de conversion entre les euros (€) et les francs, nous avons désormais globalement:

- a) Un euro équivaut 10 dollars (1 € ≈ 10 \$),
- **b)** Un dollar équivaut 10 euros (1 \$ \approx 10 \in),
- c) Un euro équivaut un dollar (1 \in \approx 1 \$),
- **d)** Un dollar équivaut un dixième d'euro (1 \$ ≈ 0,1 €).

Thème n°2: Problème du 1er degré.

Question n°1: L'équation $\frac{1}{2} \times (x-1) - \frac{2}{3} \times x = \frac{1}{3}$ a pour solution:

- **a)** -3,
- **b)** –4,
- **c)** –5,
- d) Aucune des trois propositions.

Question n°2: L'équation $2 \times (x-1) \ge 3 \times (x+2)$ a pour solution:

- **a)** x > -8,
- **b)** $x \ge -8$,
- c) x < -8,
- **d)** $x \le -8$.

Question n°3: L'équation $-4 \times x - 3 < 0$ a pour solution:

- a) $x \in]-\infty; -\frac{3}{4}],$
- **b)** $x \in]-\infty; -\frac{3}{4}[$,
- c) $x \in [-\frac{3}{4}; +\infty[$
- **d)** $x \in]-\frac{3}{4}; +\infty[$.

Question n°4: L'équation $4 \times (x-3) = 2 \times (5-x)$ a pour solution:

- a) x = -1,
- **b)** x = +1,
- c) x = 22/6,
- **d)** x = 11.

Question n°5: Quelle méthode n'est pas une méthode de résolution d'un système à deux équations linéaires et deux inconnues:

- a) Par calcul du discriminant,
- b) Par résolution graphique,
- c) Par combinaison,
- d) Par substitution.

Question n°6: Le système $\begin{cases} x-y=7 \\ 2x+3y=-1 \end{cases}$ possède comme solution le point:

- **a)** A (3; -4),
- **b)** B (5; -2),
- c) C (2; -5),
- **d)** D (4; -3).

Question n°7: Le point M (2; -1) n'est pas solution du système:

a)
$$\begin{cases} x+y=1 \\ x-y=3 \end{cases}$$
,

b)
$$\begin{cases} -x + y = -3 \\ -2x + y = -3 \end{cases}$$

c)
$$\begin{cases} x+2 y=0 \\ 2 x+y=3 \end{cases}$$

d)
$$\begin{cases} 2x - y = 5 \\ x + 2y = 0 \end{cases}$$

Question n°8: Le système $\begin{cases} 2x-y=3 \\ -4x+2y=5 \end{cases}$ possède:

- a) Aucune solution,
- **b)** Une seule solution,
- c) Une infinité de solution,
- d) Aucune des trois propositions..

Question n°9: Deux droites du plan ne peuvent pas séparer le plan en:

- a) Deux parties,
- **b)** Trois parties,
- c) Quatre parties,
- d) Cinq parties.

Question n°10: Dans un repère orthonormal (0, i, j), la solution du système d'inéquation $\{x>0\}$

$$\begin{cases} x > 0 \\ y < 0 \end{cases}$$

est l'ensemble des points M du plan situés:

- a) En haut à gauche de l'origine O,
- b) En bas à gauche de l'origine O,
- c) En bas à droite de l'origine O,
- **d)** En haut à droite de l'origine O.

Page n°6/23

Thème n°3: Problème du 2nd degré.

Question n°1: L'équation $x^2 = 10$ possède:

- a) Aucune solution,
- **b)** Une seule solution,
- c) Deux solutions,
- d) Aucune des trois propositions.

Question n°2: L'équation $x^2 - x - 1 = 0$ possède un discriminant égal à:

- **a)** 3,
- **b)** -3,
- **c)** –5,
- d) Aucune des trois propositions.

Question n°3: Quelle équation ne possède pas un discriminant positif:

a)
$$x^2 - 2x - 3 = 0$$
,

b)
$$-2 x^2 - 3 x + 1 = 0$$
,

c)
$$-3 x^2 + x - 2 = 0$$
,

d)
$$x^2 - 3x - 2 = 0$$
.

Question n°4: Quelle équation ne possède qu'une et une seule solution:

a)
$$x^2 = -1$$
,

b)
$$x^2 = 0$$
,

c)
$$x^2 = 1$$
,

Question n°5: L'équation $x^2 + x - 6 = 0$ possède comme solution:

a)
$$x = -1$$
,

b)
$$x = -2$$
,

c)
$$x = -3$$
,

Question n°6: Le nombre –1 est solution de l'équation:

a)
$$x^2 + x + 2 = 0$$
,

b)
$$x^2 - x + 2 = 0$$
,

c)
$$x^2 + x - 2 = 0$$
,

d)
$$x^2 - x - 2 = 0$$
.

Question n°7: La factorisation de $x^2 - 7x + 12$ est égale à:

a)
$$(x+3) \times (x+4)$$
,

b)
$$(x+3) \times (x-4)$$
,

c)
$$(x-3) \times (x+4)$$
,

d)
$$(x-3) \times (x-4)$$
.

Question n°8: :Le nombre –2 n'est pas solution de:

a)
$$x^2 + x - 2 = 0$$
,

b)
$$x^2 - x - 6 = 0$$
,

c)
$$x^2 + 2x = 0$$
,

d)
$$x^2 - 2x = 0$$
.

Question n°9: Le signe de l'expression $x^2 + x + 1$ est:

- a) Strictement négatif,
- **b)** Strictement positif,
- c) Négatif ou nul,
- d) Cela dépend de la valeur de x.

Question n°10: Soient x_1 et x_2 les solutions de l'équation $a x^2 + b x + c = 0$, alors le signe de l'expression $a x^2 + b x + c$ n'est pas égal:

- a) A zéro pour $x = x_1$,
- **b)** Au signe du coefficient a lorsque x est situé de part et d'autre des valeurs x_1 et x_2 ,
- c) Au signe du coefficient a lorsque x est situé entre les valeurs x_1 et x_2 ,
- **d)** Au signe du coefficient c pour x = 0.

Thème n°4: Suite arithmétique et géométrique.

Question n°1: Quel nombre complète la suite de nombres suivants 25 ; 18 ; 11 ; 4:

- **a)** 1,
- **b)** 0,
- **c)** -3,
- d) Aucune des trois propositions.

Question n°2: Quel nombre complète la suite de nombres suivants 625 ; 500 ; 400 ; 320:

- a) 280,
- **b)** 256,
- c) 240,
- d) Aucune des trois propositions.

Question n°3: Quelle lettre complète la suite logique U; D; T; Q; C; S:

- a) S.
- **b)** R,
- c) N,
- **d)** M.

Question n°4: Dans la formule $U_n = U_1 + (n-1) \times r$, le symbole r représente:

- a) Le rang du terme de la suite,
- **b)** La raison de la suite,
- c) Le premier terme de la suite,
- **d)** Le $n^{\text{ième}}$ terme de la suite.

Question n°5: Dans la formule $U_n = U_1 \times q^{n-1}$, le symbole q représente:

- a) Le quotient de U_n par U_{n+1} ,
- **b)** La raison d'une suite arithmétique,
- c) Le quotient de U_{n+1} par U_n ,
- d) Le premier terme d'une suite géométrique.

Question n°6: Dans la suite de nombres 25 ; 18 ; 11 ; 4, si le nombre 25 est le terme de rang 0 (U₀), alors le nombre 4 correspond au terme:

- **a)** U₂,
- **b)** U₃,
- c) U₄,
- d) Aucune des trois propositions.

Question n°7: Dans une suite arithmétique de raison 10 et de terme $U_2 = 1000$, on a:

- **a)** $U_4 = 980$,
- **b)** $U_4 = 1020$,
- **c)** $U_4 = 100 000$,
- **d)** $U_4 = 10$.

Question n°8: Dans une suite géométrique de raison 2 et de terme $U_4 = 100$, on a:

- a) $U_2 = 104$,
- **b)** $U_2 = 96$,
- c) $U_2 = 400$,
- **d)** $U_2 = 25$,

Question n°9: La somme des 100 premiers entiers 1 + 2 + ... + 99 + 100 est égale à:

- **a)** 5050,
- **b)** 5149,
- c) 5249,
- **d)** 5350.

Question n°10: Un capital de 10000 euros placé le 1^{er} janvier 2001 sur un compte à taux d'intérêt de 3,5 % donnera au 1^{er} janvier 2009 un capital de:

- a) 12292 euros,
- **b)** 12723 euros,
- **c)** 13168 euros,
- **d)** 13629 euros.

Thème n°5: Fonction linéaire et affine.

Question n°1: Le coefficient directeur de la droite d'équation y = 2x + 3 est égale à:

- **a)** 1,
- **b)** 2,
- **c)** 3,
- d) Aucune des trois propositions.

Question n°2: Si l'ordonnée à l'origine d'une droite est égale à 4, alors son équation peut être:

- a) y = 4x 4,
- **b)** y = -4 x 4,
- c) y = -4x + 4,
- d) Aucune des trois propositions.

Question n°3: La représentation graphique de la droite d'équation y = 5 est une droite:

- a) Horizontale,
- **b)** Verticale,
- c) Croissante,
- d) Décroissante.

Question n°4: Dans un repère (Oxy), les points M(x; y) tels x < 0 et y < 0 sont situés:

- a) En haut à gauche du point O,
- **b)** En haut à droite du point O,
- c) En bas à gauche du point O,
- **d)** En bas à droite du point O.

Question n°5: Le point d'intersection de la droite d'équation y = 4 x - 3 avec l'axe des ordonnées à pour coordonnées:

- **a)** (1;1),
- **b)** $(\frac{3}{4}; 0)$,
- c) (0; -3),
- d) Aucune des trois propositions.

Question n°6: Le coefficient directeur de la droite passant par les points C et D de coordonnées respectives C (-4; 5) et D (4; -7) est égal à:

- a) 2/3,
- **b)** -2/3,
- c) 1,5,
- **d)** -1,5.

Question n°7: L'ordonnée à l'origine de la droite passant par le point M (3; -4) et de pente -2 est égal à:

- a) -1,
- **b)** 0,
- **c)** 1,
- **d)** 2.

Question n°8: Quel point n'appartient pas à la droite y = -2x + 3:

- **a)** A(0;3),
- **b)** B (2; -1),
- c) C(-2;6),
- **d)** D (1;1).

Question n°9: Le point M (2; -3) appartient à la droite d'équation:

- **a)** y = -x + 1,
- **b)** y = x + 1,
- **c)** y = -x 1,
- **d)** y = x 1.

Question n°10: Dans un repère orthonormal (Oxy), le point d'intersection I entre la droite d'équation y = -x - 1 et l'axe des abscisses est situé:

- a) Au dessus du point A (1;1),
- **b)** A droite du point B (-1; 1),
- c) Au dessous du point C(-1;-1),
- **d)** A gauche du point D (1; -1).

Thème n°6: Fonction polynôme du second degré.

Question n°1: Soit la fonction f définie par $f(x) = 3x^2 + 2x + 4$. La dérivée f' de f est telle que:

- a) f'(x) = 3x + 2,
- **b)** f'(x) = 3x + 4,
- **c)** f'(x) = 6x + 2,
- **d)** f'(x) = 3x + 4.

Question n°2: Si la dérivée f' de la fonction f est telle que f'(x) = -4x + 5, alors la fonction f peut s'écrire:

- a) $f(x) = -4 x^2 + 5 x$,
- **b)** $f(x) = +4 x^2 + 5 x$,
- c) $f(x) = -2 x^2 + 5 x$,
- **d)** $f(x) = -2x^2 5x$.

Question n°3: La courbe représentative de la fonction $f(x) = x^2 - 4$ possède avec l'axe des ordonnées:

- a) Aucun point d'intersection,
- **b)** Un point d'intersection,
- c) Deux points d'intersection,
- d) Aucune des trois propositions.

Question n°4: La courbe représentative de la fonction $f(x) = x^2 + x - 6$ possède avec l'axe des abscisses un point d'intersection M de coordonnées (x; y) tel que:

- **a)** x = -4,
- **b)** x = -3,
- c) x = -2,
- **d)** x = -1.

Question n°5: La courbe représentative de la fonction $f(x) = 3 x^2 + 2 x + 1$ possède avec l'axe des ordonnées un point d'intersection M de coordonnées (x; y) tel que:

- **a)** y = 1,
- **b)** y = 2,
- **c)** y = 3,
- d) Aucune des trois propositions.

Question n°6: La fonction $f(x) = -x^2 - 2x + 3$ ne passe par le point:

- a) A(-2;3),
- **b)** B (-1;5),
- **c)** C (0; 3),
- **d)** D (1; 0).

Question n°7: Le point M (-1; 0) appartient à la courbe représentative de la fonction f telle que:

- a) $f(x) = x^2 + 2x + 3$,
- **b)** $f(x) = -2x^2 + 3x + 1$,
- c) $f(x) = 3x^2 + x 2$,
- **d)** $f(x) = x^2 2x + 3$.

Question n°8: La fonction $f(x) = -x^2 - 2x + 3$ possède:

- a) Un maximum,
- b) Deux maximum locaux,
- c) Un minimum,
- d) Deux minimum locaux.

Question n°9: L'extremum de la fonction $f(x) = x^2 + 4x - 3$ possède comme abscisse la valeur:

- **a)** 2,
- **b**) -3,
- **c)** 2,
- **d)** 3.

Question n°10: La fonction $f(x) = -x^2 + 2x - 3$ est:

- a) Croissante puis décroissante,
- b) Décroissante puis croissante,
- c) Croissante, décroissante puis croissante.
- d) Décroissante, croissante puis décroissante.

Thème n°7: Fonction exponentielle et logarithme.

Question n°1: Quelle affirmation concernant la fonction $y = f(x) = e^x$ est fausse:

- a) Elle est strictement croissante,
- b) Elle ne coupe pas l'axe des abscisses,
- c) Quelque soit la valeur de x, e^x est strictement positif,
- d) Elle ne coupe pas l'axe des ordonnées.

Question n°2: Quelle affirmation concernant la fonction $y = f(x) = \ln x$ est fausse:

- a) Elle est strictement croissante,
- **b)** Elle ne coupe pas l'axe des abscisses,
- c) $\ln x = 1 \Leftrightarrow x = e$,
- d) Elle ne coupe pas l'axe des ordonnées.

Question n°3: Quelle propriété ne s'applique pas à la fonction $y = f(x) = e^x$ (avec a et b deux nombres réels quelconques):

a)
$$e^{a} \times e^{b} = e^{a + b}$$
,

$$\mathbf{b)} (e^{a})^{b} = e^{a \times b},$$

c)
$$e^a \div e^b = e^{a-b}$$
,

d)
$$e^{-b} = -e^{b}$$
.

Question n°4: Quelle propriété ne s'applique pas à la fonction $y = f(x) = \ln x$ (avec a et b deux nombres réels strictement positifs):

a)
$$\ln (1 \div b) = - \ln b$$
,

b)
$$b \times \ln a = \ln (a^b)$$
,

c)
$$\ln a \div \ln b = \ln (a \div b)$$
,

d)
$$\ln a + \ln b = \ln (a \times b)$$
.

Question n°5: Quelle équation ne possède pas de solution:

a)
$$3 \times e^{x} = 2$$
,

b)
$$3 \times e^{-x} = 2$$
,

c)
$$-3 \times e^{-x} = 2$$
,

d) Aucune des trois équations.

Question n°6: Quelle équation ne possède pas de solution:

a)
$$3 \times \ln x = 2$$
,

b)
$$3 \times \ln(-x) = 2$$
,

c)
$$-3 \times \ln(-x) = 2$$
,

d) Aucune des trois équations.

Question n°7: Quelle affirmation concernant la fonction $y = f(x) = e^x$ est fausse:

a)
$$e^1 \approx 2,718$$
,

c)
$$e^0 = 1$$
,

d)
$$a = e^b \Leftrightarrow \ln a = b$$
.

Question n°8: Quelle affirmation concernant la fonction $y = f(x) = \ln x$ est fausse:

- a) $\ln e = 1$,
- b) ln 0 n'est pas défini,
- **c)** $\ln 1 = e$,
- **d)** $\ln (e^b) = b$.

Question n°9: Quelles sont les deux fonctions qui ne sont pas des fonctions réciproques:

- a) \sqrt{x} et x^2 ,
- **b)** $\ln x$ et e^x ,
- c) $\log x$ et 10^x ,
- d) $\sin x$ et $\cos x$.

Question n°10: Quelle est la propriété graphique des courbes associées à deux fonctions réciproques:

- a) Elles sont symétriques par rapport à l'axe des abscisses,
- b) Elles sont symétriques par rapport à l'axe des ordonnées,
- c) Elles sont symétriques par rapport à l'origine O du repère,
- d) Elles sont symétriques par rapport à la droite d'équation y = x.

Thème n°8: Dérivée, primitive et calcul intégral

Question n°1: Soit la fonction $f(x) = -3x^2 + 4x - 5$. La dérivée f' de la fonction f est telle que:

a)
$$f'(x) = -3x + 4$$
,

b)
$$f'(x) = 6x + 4$$
,

c)
$$f'(x) = -6x - 5$$
,

d)
$$f'(x) = -6x + 4$$
.

Question n°2: Soit la fonction $f(x) = 3 e^{-4x} - 2 e^{+2x}$. La dérivée f' de la fonction f est telle que:

a)
$$f'(x) = -12 e^{-4x} - 4 e^{-2x}$$
,

b)
$$f'(x) = -12 e^{+4x} - 4 e^{+2x}$$

c)
$$f'(x) = -12 e^{-4x} - 4 e^{+2x}$$
,

d)
$$f'(x)$$
 = Aucune des trois propositions.

Question n°3: Soit la fonction $f(x) = -3x^2 + 4x - 5$. La primitive F de la fonction f est telle que:

a)
$$F(x) = -x^3 + 2x^2 - 5$$
,

b)
$$F(x) = -x^2 + 2x^2 - 5x$$
,

c)
$$F(x) = -x^3 + 4x^2 - 5x$$
,

Question n°4: Soit la fonction $f(x) = 3 e^{-4x} - 2 e^{+2x}$. La primitive F de la fonction f est telle que:

a)
$$F(x) = -\frac{3}{4} e^{+4x} - e^{-2x}$$

b)
$$F(x) = \frac{3}{4} e^{-4x} + e^{+2x}$$

c)
$$F(x) = -\frac{3}{4} e^{-4x} - e^{+2x}$$

d)
$$F(x) = -\frac{3}{4}e^{-4x} + e^{+2x}$$

Question n°5: Quelle fonction F n'est pas une primitive de la fonction $f(x) = e^x + 1$:

a)
$$F(x) = e^x + x + 1$$
,

b)
$$F(x) = e^x + 2x - x$$
,

c)
$$F(x) = e^x + x + x$$
,

d)
$$F(x) = e^x + x + 2$$
.

Question n°6: Quelle fonction F possède les deux propriétés suivantes: être à la fois la primitive de la fonction $f(x) = e^{-\frac{1}{2}x}$ et s'annuler pour x = 0:

a)
$$F(x) = \frac{1}{2} e^{-\frac{1}{2}x} - \frac{1}{2}$$
,

b)
$$F(x) = -2 e^{-\frac{1}{2}x} + 2$$
,

c)
$$F(x) = -\frac{1}{2} e^{-\frac{1}{2}x} + \frac{1}{2}$$
,

d)
$$F(x) = 2 e^{-\frac{1}{2}x} - 2$$
.

Question n°7: Que vaut $\int_{-1}^{2} \cos(x) dx$:

a)
$$[\cos(x)]_{-1}^2$$

a)
$$[\cos(x)]_{-1}^2$$
, **b)** $[-\cos(x)]_{-1}^2$, **c)** $[\sin(x)]_{-1}^2$, **d)** $[-\sin(x)]_{-1}^2$.

c)
$$[\sin(x)]_{-1}^2$$
,

d)
$$[-\sin(x)]_{-1}^2$$

Question n°8: Que vaut $\int_0^2 (x+1) dx$:

- **a)** 6,
- **b)** 4,
- **c)** 2,
- **d)** 0.

Question n°9: Quelle est l'aire en unités d'aires de la partie du plan délimitée par les droites verticales d'équation x = 0 et x = 1, l'axe des abscisses et la droite d'équation y = x:

- **a)** 1/3,
- **b)** ½,
- **c)** 2/3,
- **d)** ³/₄.

Question n°10: Quelle est l'aire en unités d'aires de la partie du plan délimitée par les droites verticales d'équation x = 0 et x = 1, l'axe des abscisses et la courbe C représentative de la fonction $y = f(x) = x^2$:

- **a)** 1/3,
- **b)** $\frac{1}{2}$,
- c) 2/3,
- **d)** ³/₄.

Thème n°9: Statistiques

Question n°1: Si le caractère étudié est la marque du véhicule dans un parc automobile, alors le caractère est:

- a) quantitatif discret,
- **b)** quantitatif continu,
- c) qualitatif,
- d) Aucune des trois propositions.

Question n°2: Quel caractère est un caractère quantitatif continu:

- a) Le groupe sanguin de la population française,
- b) Le résultat affiché sur un dé sur cent lancés consécutifs,
- c) Le nombre de pièces mises au rebut sur cinquante pièce sortant d'une chaîne fabrication,
- d) Le poids des bébés à la naissance.

Question n°3: Quelle représentation n'est pas une représentation graphique d'une série statistique:

- a) La représentation en diagramme circulaire,
- **b)** La représentation de Fresnel,
- c) La représentation en diagramme en bâtons,
- d) La représentation en histogramme.

Question n°4: Quelle grandeur n'est pas une caractéristique de position d'une série statistique:

- a) L'étendue,
- **b)** Le mode,
- c) La médiane,
- d) La moyenne.

Question n°5: Quelle est la notation usuelle pour la moyenne d'une série statistique:

- a) x,
- **b**) \overline{x} ,
- c) |x|,
- d) \underline{x} .

Question n°6: Quelle est la relation entre la variance et l'écart-type d'une série statistique:

- a) La variance est égale à la racine carré de l'écart-type,
- b) La variance est égale au carré de l'écart-type,
- c) La variance est égale au double de l'écart-type,
- d) La variance est égale à la moitié de l'écart-type,

Question n°7: Quelle est la propriété de la moyenne associée à la série statistique suivante:

- a) La moyenne est inférieure ou égale à 10,
- **b)** La moyenne est supérieure ou égale à 12,
- c) La moyenne est une des valeurs présentées,
- d) La moyenne est comprise entre deux valeurs consécutives.

Question n°8: Quelle est la propriété de la valeur *x* à ajouter aux valeurs 10 et 14 pour obtenir une moyenne égale à 13:

- a) x est inférieure ou égale à 14,
- **b)** x est supérieure ou égale à 17,
- c) x est la symétrique de 10 par rapport à la moyenne,
- d) La somme des trois valeurs est égale à trente neuf.

Question n°9: Si l'écart-type d'une série statistique est égal à 3, alors la variance de cette même série statistique est égale à:

- **a)** 1,5,
- **b**) $\sqrt{3}$,
- **c)** 6,
- **d)** 9.

Question n°10: Le point moyen du nuage de points constitués des points A (4; -3) et B (-2; 1) est le point G tel que les coordonnées de G sont:

- a) G(2;-2),
- **b)** G(6;-4),
- c) G(1;-1),
- **d)** G(-6;4).

Thème n°10: Point, vecteur et calcul vectoriel

Question n°1: Par rapport à l'origine O du repère, le point M (-2; 3) se situe:

- a) En bas à droite,
- b) En bas à gauche,
- c) En haut à droite,
- d) En haut à gauche,

Question n°2: Quel point se situe en bas à droite par rapport à l'origine O du repère?

- a) A (4;3),
- **b)** B (-3; -2),
- c) C (2; -3),
- d) Aucune des trois propositions.

Question n°3: Dans la notation M (-1; 2), le nombre 2 correspond à:

- a) L'abscisse du point M,
- b) L'ordonnée du point M,
- c) La distance OM,
- d) Aucune des trois propositions.

Question n°4: Soit le point M (-3;0), la distance OM est égale à:

- **a**) -3,
- **b)** 0,
- c) 3,
- d) Aucune des trois propositions.

Question n°5: Qu'est ce qui ne caractérise pas un vecteur?

- a) Sa norme,
- b) Son sens,
- c) Son point d'application,
- d) Sa direction.

Question n°6: Soient les points C(-2; 1) et D(4; -3). Le vecteur DC s'écrit:

- a) DC = 6 i 4 j,
- **b)** DC = 2 i 2 j,
- c) DC = -8i 3j,
- **d)** Aucune des trois propositions.

Question n°7: Soient les vecteurs CD et EF de coordonnées respectives:

CD
$$(4;-1)$$
 et **EF** $(-2;3)$

Alors le vecteur $3 \times DC + 2 \times EF$ a pour coordonnées:

- a) (8;3),
- **b)** (-16; 9),
- c) (8;9),
- d) Aucune des trois propositions.

Question n°8: Soit le vecteur \mathbf{u} des coordonnées (-3; 4). La norme de \mathbf{u} est égale à:

- **a)** 5,
- **b**) $\sqrt{7}$,
- **c)** 25,
- **d)** 7.

Question n°9: Soient les vecteurs \mathbf{u} et $\mathbf{v} = -3 \times \mathbf{u}$. Quelle propriété possèdent-ils?

- a) Ils ont le même sens,
- **b)** Ils ont la même norme,
- c) Ils sont colinéaires,
- d) Ils sont perpendiculaires.

Question n°10: Le produit scalaire entre les vecteurs $\mathbf{u}(-3;4)$ et $\mathbf{v}(2;-1,5)$ est:

- a) Négatif,
- b) Nul,
- c) Positif,
- d) Ne peut pas être calculé.

QCM – Document réponse

	Q	1	2	3	4	5	6	7	8	9	10		Q	1	2	3	4	5	6	7	8	9	10
Thème n°1	a)							-					a)										
	b)											Thème n°6	b)										
	c)												c)										
	d)												d)										
	C												C										
	Q	1	2	3	4	5	6	7	8	9	10		Q	1	2	3	4	5	6	7	8	9	10
	a)												a)										
Thème n°2	b)											∠ _o u (b)										
ème	c)											Thème n°7	c)										
Th	d)												d)										
	C												C										
	Q	1	2	3	4	5	6	7	8	9	10		Q	1	2	3	4	5	6	7	8	9	10
Thème n°3	a)											Thème n°8	a)										
	b)												b)										
ième	c)												c)										
I	d)												d)										
	С												С										
	Q	1	2	3	4	5	6	7	8	9	10	Thème n°9	Q	1	2	3	4	5	6	7	8	9	10
4	a)												a)										
e n°	b)												b)										
Thème n°4	c)												c)										
I	d)												d)										
	С												С										
	Q	1	2	3	4	5	6	7	8	9	10	Thème n°10	Q	1	2	3	4	5	6	7	8	9	10
2	a)												a)										
Thème n°5	b)												b)										
hèm	c)												c)										
T	d)											TI	d)										
	C												С										

Thème		1	2	3	4	5	6	7	8	9	10	Total	Points	Note
ses	J													
Réponses	N													
Ré	F													