SASTAM

BREVET DE TECHNICIEN SUPÉRIEUR

Épreuve de Mathématiques

GROUPEMENT C

Durée : 2 heures

SPÉCIALITÉS	COEFFICIENT
Agroéquipement	1
Charpente-couverture	1,5
Communication et industrie graphique	2
Étude et réalisation d'outillages de mise en forme des matériaux	2
Industries céramiques	2
Industries céréalières	2
Industries des matériaux souples (2 options)	1
Industries papetières	2
Mise en forme des alliages moulés	2
Mise en forme des matériaux par forgeage	2
Productique bois et ameublement	1,5
Productique textile (4 options)	3
Réalisation d'ouvrages chaudronnés	2
Systèmes constructifs bois et habitat	1,5

Dès que le sujet vous est remis, assurez-vous qu'il est complet. Ce sujet comporte 3 pages numérotées de 1/3 à 3/3. Plus le formulaire de mathématiques page 1 à 5

Une feuille de papier millimétré sera distribuée avec la copie

La clarté des raisonnements et la qualité de la rédaction interviendront pour une part importante dans l'appréciation des copies.

CALCULATRICE AUTORISÉE

Sont autorisées toutes les calculatrices de poche, y compris les calculatrices programmables, alphanumériques ou à écran graphique à condition que leur fonctionnement soit autonome et qu'il ne soit pas fait usage d'imprimantes.

Le candidat n'utilise qu'une seule machine sur la table. Toutefois, si celle-ci vient à connaître une défaillance, il peut la remplacer par une autre.

Afin de prévenir les risques de fraude, sont interdits les échanges de machines entre les candidats, la consultation des notices fournies par les constructeurs ainsi que les échanges d'informations par l'intermédiaire des fonctions de transmission des calculatrices.

EXERCICE 1: (10 points)

Le but du problème est l'étude de la demande et de l'offre pour un nouveau produit de grande consommation. Une étude statistique a donné les résultats suivants où :

- x désigne le prix unitaire en euros du produit ;
- y désigne la demande (la quantité de produit demandée par les consommateurs), en milliers d'unités;
- z désigne l'offre (la quantité de produit offerte sur le marché par les producteurs), en milliers d'unités.

x en euros	0,5	1	1,5	2	2,5	3	3,5	4
y en milliers	7,8	6,1	4,7	3,7	3	2,5	2,2	2
z en milliers	0,9	1,4	1,7	1,9	2,1	2,3	2,4	2,6

Partie A. Étude de la demande

On considère l'équation différentielle (E): y'+0.4y=0.4x-1 où y désigne une fonction de la variable x, définie et dérivable sur l'ensemble R des nombres réels et y' sa fonction dérivée.

- 1. Résoudre sur l'ensemble des nombres réels, l'équation différentielle : y' + 0,4y = 0.
- 2. a. Déterminer les réels a et b pour que la fonction g, définie pour tout x réel par g(x) = ax + b, soit une solution particulière de l'équation (E).
 - b. Résoudre l'équation différentielle (E).
- 3. Déterminer la fonction f, solution sur l'ensemble des nombres réels de l'équation différentielle (E), telle que f(0)=10.
- 4. On appelle d la fonction demande, en milliers d'unités pour un prix de x euros, définie sur l'intervalle [0,5;4] par y=d(x). On admet que, pour tout x de l'intervalle [0,5;4], $d(x)=15e^{-0.4x}+x-5$.
 - a. Soit d' la fonction dérivée de la fonction d. Déterminer d'(x) et en déduire les variations de la fonction d sur l'intervalle [0,5;4].
 - b. Le plan est muni d'un repère orthogonal d'unités graphiques 2 cm sur l'axe des abscisses et 1 cm sur l'axe des ordonnées. On admet que le tableau de valeurs ci-dessus est le tableau de valeurs de la fonction d définie par y = d(x).

Construire la courbe C_d représentative de la fonction d sur l'intervalle [0,5;4].

Partie B: Étude de l'offre

1. a. Compléter, après l'avoir reproduit, le tableau suivant. Les résultats seront arrondis à 10⁻².

x	0,5	1	1,5	2	2,5	3	3,5	4
z	0,9	1,4	1,7	1,9	2,1	2,3	2,4	2,6
$Z=e^{z}$	2,46							

- **b.** Donner une équation de la droite de régression de Z en x par la méthode des moindres carrés sous la forme Z = ax + b où a et b seront arrondis au dixième.
- c. En déduire une expression de z en fonction de x.
- 2. On appelle h la fonction offre, en milliers d'unités pour un prix de x euros, définie sur l'intervalle [0,5;4] par z=h(x). On admet que, pour tout x de l'intervalle [0,5;4], $h(x)=\ln(3x+0.9)$.
 - a. Soit h' la fonction dérivée de la fonction h. Déterminer h'(x) et en déduire les variations de la fonction h sur l'intervalle [0,5;4].
 - **b.** Construire la courbe C_h représentative de la fonction h dans le même repère que la courbe C_d . On pourra utiliser le tableau de valeurs ci-dessus.
 - c. Déterminer graphiquement, avec la précision permise par le graphique, une valeur approchée du prix de vente en euros, à 10 centimes près, pour lequel la demande est égale à l'offre.

EXERCICE 2: (10 points)

Les parties A, B, et C peuvent être traitées indépendamment les unes des autres.

Une entreprise produit en grande série trois modèles de stylos notés, M_1 , M_2 et M_3 . Un stylo peut être conforme ou non conforme.

Partie A. Dans cette partie, on s'intéresse aux stylos du modèle M₁

Un des stocks est constitué de stylos du modèle M_1 , provenant de deux chaînes de production C_1 et C_2 . Ces chaînes produisent respectivement 40 % et 60 % du stock. On constate que la chaîne C_1 produit 6 % de stylos non conformes.

On prélève au hasard un stylo dans ce stock.

- 1. Quelle est la probabilité de prélever au hasard un stylo provenant de la chaîne C₁ et non conforme ?
- 2. On appelle t le pourcentage de stylos non conformes produit par la chaîne C_2 . Déterminer t pour que la probabilité de prélever au hasard un stylo non conforme dans le stock de stylos du modèle M_1 soit égale à 0,09.

Partie B. Dans cette partie, on s'intéresse aux stylos du modèle M 2

Un autre stock est constitué de stylos du modèle M 2. On admet que 3 % des stylos de ce stock sont non conformes. On prélève au hasard, dans ce stock, un lot de 50 stylos. On admet que ce stock est suffisamment important pour que ce prélèvement soit assimilé à un tirage avec remise. On note X la variable aléatoire qui, à chaque prélèvement de 50 stylos, associe le nombre de stylos non conformes.

1. Déterminer la loi de probabilité de la variable X. Justifier la réponse et préciser les paramètres.

- 2. Dans cette question les résultats seront arrondis à 10⁻³.
 - a. Quelle est la probabilité que ce lot contienne exactement 2 stylos non conformes ?
 - b. Quelle est la probabilité que ce lot contienne au moins 2 stylos non conformes?
- 3. a. On approche la variable aléatoire X par une variable Y qui suit une loi de Poisson. Donner le paramètre de cette loi.
 - b. A l'aide de la variable aléatoire Y, donner une estimation de la probabilité qu'il y ait exactement 47 stylos conformes dans ce lot.

Partie C. Dans cette partie, on s'intéresse à la masse des stylos du modèle M₃

Un autre stock est constitué de stylos du modèle M 3. Ce stock est conforme quant à la masse si la moyenne des masses des stylos de ce stock est de 11 grammes. Pour vérifier cette affirmation on construit un test d'hypothèse bilatéral au risque de 10 %.

- 1. a. Quelle est l'hypothèse nulle H₀? Quelle est l'hypothèse alternative H₁?
 - b. On note \overline{Z} la variable aléatoire qui, à chaque échantillon aléatoire de 100 stylos prélevés dans ce stock associe la moyenne des masses des stylos de ce stock. On considère ces prélèvements comme des tirages avec remise car ce stock est très important. On suppose que, sous l'hypothèse nulle H $_0$, la variable aléatoire \overline{Z} suit la loi normale de moyenne 11 et d'écart-type 0,4.
 - Sous l'hypothèse nulle H_0 , déterminer le nombre réel positif h tel que : $P(11-h \le \overline{Z} \le 11+h) = 0.9$.
 - c. Énoncer la règle de décision permettant d'utiliser ce test.
- 2. On prélève un échantillon aléatoire de 100 stylos et on constate que la moyenne des masses des stylos de cet échantillon est de 10,6 grammes. Peut-on au risque de 10 % conclure que le stock de stylos du modèle M₃ est conforme quant à la masse?

FORMULAIRE DE MATHÉMATIQUES

B.T.S.: groupement C

AGROÉQUIPEMENT

CHARPENTE-COUVERTURE

COMMUNICATION ET INDUSTRIE GRAPHIQUE

ÉTUDE ET RÉALISATION D'OUTILLAGES DE MISE EN FORME DES

MATÉRIAUX

INDUSTRIES CÉRAMIQUES
INDUSTRIES CÉRÉALIÈRES
INDUSTRIES DES MATÉRIAUX SOUPLES (2 OPTIONS)
INDUSTRIES PAPETIÈRES
MISE EN FORME DES ALLIAGES MOULÉS
MISE EN FORME DES MATÉRIAUX PAR FORGEAGE
PRODUCTIQUE BOIS ET AMEUBLEMENT
PRODUCTIQUE TEXTILE (4 OPTIONS)
RÉALISATION D'OUVRAGES CHAUDRONNÉS
SYSTÈMES CONSTRUCTIFS BOIS ET HABITAT

Plusieurs résultats figurant dans ce formulaire ne sont pas au programme de TOUTES les spécialités de BTS appartenant à ce groupement.

I. RELATIONS FONCTIONNELLES

$$\ln(ab) = \ln a + \ln b, \text{ où } a > 0 \text{ et } b > 0$$

$$\exp(a+b) = \exp a \times \exp b$$

$$a^t = e^{t \ln a}$$
, où $a > 0$

$$t^{\alpha} = e^{\alpha \ln t}$$
, où $t > 0$

$$\cos(a+b) = \cos a \cos b - \sin a \sin b$$

$$\sin(a+b) = \sin a \cos b + \cos a \sin b$$

$$cos(2t) = 2cos^2 t - 1 = 1 - 2sin^2 t$$

$$\sin(2t) = 2\sin t \cos t$$

$$\sin p + \sin q = 2\sin\frac{p+q}{2}\cos\frac{p-q}{2}$$

$$\sin p - \sin q = 2\sin \frac{p-q}{2}\cos \frac{p+q}{2}$$

$$\cos p + \cos q = 2\cos\frac{p+q}{2}\cos\frac{p-q}{2}$$

$$\cos p - \cos q = -2\sin\frac{p+q}{2}\sin\frac{p-q}{2}$$

$$\cos a \cos b = \frac{1}{2} \left[\cos (a+b) + \cos (a-b) \right]$$

$$\sin a \sin b = \frac{1}{2} \left[\cos (a-b) - \cos (a+b) \right]$$

$$\sin a \cos b = \frac{1}{2} \left[\sin (a+b) + \sin (a-b) \right]$$

$$e^{it} = \cos t + i \sin t$$

$$\cos t = \frac{1}{2} \left(e^{it} + e^{-it} \right)$$

$$\sin t = \frac{1}{2i} \left(e^{it} - e^{-it} \right)$$

$$e^{\alpha t} = e^{\alpha t} (\cos(\beta t) + i \sin(\beta t)), \text{ où } \alpha = \alpha + i\beta$$

2. CALCUL DIFFERENTIEL ET INTEGRAL

a) Limites usuelles

Comportement à l'infini

$$\lim_{t\to +\infty} \ln t = +\infty ;$$

$$\lim e^t = +\infty ;$$

$$\lim e^{f}=0;$$

Si
$$\alpha > 0$$
, $\lim_{t \to +\infty} t^{\alpha} = +\infty$; si $\alpha < 0$, $\lim_{t \to +\infty} t^{\alpha} = 0$

Croissances comparées à l'infini

Si
$$\alpha > 0$$
, $\lim_{t \to +\infty} \frac{e^t}{t^{\alpha}} = +\infty$

Si
$$\alpha > 0$$
, $\lim_{t \to +\infty} \frac{\ln t}{t^{\alpha}} = 0$

Comportement à l'origine

$$\lim_{t\to 0} \ln t = -\infty$$

Si
$$\alpha > 0$$
, $\lim_{t \to 0} t^{\alpha} = 0$; si $\alpha < 0$, $\lim_{t \to 0} t^{\alpha} = +\infty$

Si
$$\alpha > 0$$
, $\lim_{t \to 0} t^{\alpha} \ln t = 0$.

b) Dérivées et primitives

Fonctions usuelles

f(t)	f'(t)	f(t)	f'(t)
ln t	$\frac{1}{t}$	Arc sin t	$\frac{1}{\sqrt{1-t^2}}$
e^t $t^{\alpha} \ (\alpha \in \mathbb{R})$	e^t $\alpha t^{\alpha-1}$	Arc tan t	$\frac{1}{1+t^2}$
sin t	cos t	$e^{at} \ (a \in \mathbb{C})$	ae ^{at}
cos t	$-\sin t$		
ten t	$\frac{1}{\cos^2 t} = 1 + \tan^2 t$	-	

Opérations

$$(u+v)' = u' + v'$$

$$(ku)' = ku'$$

$$(uv)' = u'v + uv'$$

$$\left(\frac{1}{u}\right)' = -\frac{u'}{u^2}$$

$$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$$

$$(v \circ u)' = (v' \circ u)u'$$

$$(e^u)' = e^u u'$$

$$(\ln u)' = \frac{u'}{u}, \ u \text{ à valeurs strictement positives}$$

$$(u^{\alpha})' = \alpha u^{\alpha - 1} u'$$

$$(u^{\alpha})' = \alpha u^{\alpha-1} u'$$

c) Calcul intégral

Valeur moyenne de f sur [a, b]: $\frac{1}{b-c}\int_{a}^{b}f(t)\,dt$

Integration par parties: $\int_{a}^{b} u(t) \, v'(t) \, dt = [u(t)v(t)]_{a}^{b} - \int_{a}^{b} u'(t) \, v(t) \, dt$

d) Développements limités

$$e^{t} = 1 + \frac{t}{1!} + \frac{t^{2}}{2!} + \dots + \frac{t^{n}}{n!} + t^{n} \varepsilon (t)$$

$$\frac{1}{1+t} = 1 - t + t^{2} + \dots + (-1)^{n} t^{n} + t^{n} \varepsilon (t)$$

$$\ln(1+t) = t - \frac{t^{2}}{2!} + \frac{t^{3}}{2!} + \dots + (-1)^{n-1} \frac{t^{n}}{2!} + t^{n} \varepsilon (t)$$

$$e^{t} = 1 + \frac{t}{1!} + \frac{t^{2}}{2!} + \dots + \frac{t^{n}}{n!} + t^{n} \varepsilon (t)$$

$$= \frac{1}{1+t} = 1 - t + t^{2} + \dots + (-1)^{n} t^{n} + t^{n} \varepsilon (t)$$

$$\ln(1+t) = t - \frac{t^{2}}{2} + \frac{t^{3}}{3} + \dots + (-1)^{n-1} \frac{t^{n}}{n} + t^{n} \varepsilon (t)$$

$$\sin t = \frac{t}{1!} - \frac{t^{3}}{3!} + \frac{t^{5}}{5!} + \dots + (-1)^{p} \frac{t^{2p+1}}{(2p+1)!} + t^{2p+1} \varepsilon (t)$$

$$\cos t = 1 - \frac{t^{2}}{2!} + \frac{t^{4}}{4!} + \dots + (-1)^{p} \frac{t^{2p}}{(2p)!} + t^{2p} \varepsilon (t)$$

$$(1+t)^{\alpha} = 1 + \frac{\alpha}{1!} t + \frac{\alpha(\alpha-1)}{2!} t^{2} + \dots + \frac{\alpha(\alpha-1) \cdot (\alpha-n+1)}{n!} t^{n} + t^{n} \varepsilon (t)$$

e) Equations différentielles

Équations	Solutions sur un intervalle I
a(t) x' + b(t) x = 0	$f(t) = ke^{-G(t)}$ où G est une primitive de $t \mapsto \frac{b(t)}{a(t)}$
ax'' + bx' + cx = 0	Si $\Delta > 0$, $f(t) = \lambda e^{r_1 t} + \mu e^{r_2 t}$ où r_1 et r_2 sont les racines de l'équation caractéristique
équation caractéristique :	Si $\Delta = 0$, $f(t) = (\lambda t + \mu)e^{rt}$ où r est la racine double de l'équation caractéristique
$ar^2 + br + c = 0$	Si $\Delta < 0$, $f(t) = [\lambda \cos(\beta t) + \mu \sin(\beta t)]e^{\alpha t}$ où $r_1 = \alpha + i\beta$ et $r_2 = \alpha - i\beta$ sont les racines
de discriminant Δ	complexes conjuguées de l'équation caractéristique.

- 3 -

3. PROBABILITES

a) Loi binomiale
$$P(X = k) = C_n^k p^k q^{n-k}$$
 où $C_n^k = \frac{n!}{k!(n-k)!}$; $E(X) = np$; $\sigma(X) = \sqrt{npq}$

b) Loi de Poisson

$$P(X=k)=\frac{e^{-\lambda} \lambda^k}{k!}$$

$$E(X) = \lambda$$

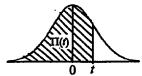
$$V(X) = \lambda$$

k A	0,2	0,3	0;4	9,5	0,6
0	0,8187	0,7408	0,6703	0,6065	0,5488
1	0,1637	0,2222	0,2681	0,3033	0,3293
. 2	0,0164	0,0333	0,0536	0,0758	0,0988
3	0,0011	0,0033	0,0072	0,0126	0,0198
4	0,0000	0,0003	0,0007	0,9016	0,0030
5		0,0000	0,0001	0,0002	8,0064
6			0,0000	0,0000	0,0000

į Ž	1	1,5	2	3	4	5	6	7	8	9	10
k O	0,368	0,223	0.135	0.050	0.018	0.007	0.002	0.001	0.000	0.000	0.000
1	0.368	0,335	0.271	0.149	0.073	0.034	0.015	0.006	0.003	0.001	0.008
2	0.184	0.251	0.271	0.224	0.147	0.084	9.045	0.022	0.011	0.005	0.002
3	0.061	0.126	0.180	0.224	0.195	0.140	0.089	6.052	0.029	0.015	800.0
4	0.015	0.047	0.090	0.168	0.195	0.176	0.134	0.091	0.057	0.034	0.019
5	0.003	0.014	0.036	0.101	0.156	0.176	0.161	0.128	0.092	9.061	0.038
6	0.001	0.004	0.612	0.050	0.104	0.146	0.161	0.149	0.122	0.091	0.063
7	0.000	0.001	0.003	0.022	0.060	0.104	0.138	0.149	0.140	0.117	9.090
8		0.000	0.001	800.6	0.030	0.065	0.103	0.130	0.140	0.132	0.113
9			0.000	0.003	0.013	0.036	0.069	0.101	0.124	0.132	0.125
10				0.001	0.005	0.018	0.041	0.071	0.099	0.119	0.125
11				0.000	0.002	0.008	0.023	0.045	6.072	0.097	0.114
12					0.001	0.003	0.011	0.026	0.048	0.073	0.095
13		ļ	}		0.000	0.001	0.005	0.014	0.030	0.050	0.073
14	į	Ì				0.000	0.002	6.007	0.017	0.032	0.052
15			ļ				0.001	0.003	0.009	0.019	0.035
16				1			0.000	0.001	0.005	0.011	0.022
17								0.001	0.002	0.006	0.013
18						1		0,000	6.001	0.003	0.007
19								į	0.000	0.001	0.004
20										0.001	0.002
21								Ì		0,000	0.001
22											0.000

c) Loi exponentielle

Fonction de fiabilité: $R(t) = e^{-\lambda t}$


$$E(X) = \frac{1}{\lambda}$$
 (M.T.B.F.) $\sigma(X) = \frac{1}{\lambda}$

d) Loi normale

La loi normale centrée réduite est caractérisée par la densité de probabilité : $f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$

EXTRAITS DE LA TABLE DE LA FONCTION INTEGRALE DE LA LOI NORMALE CENTREE, REDUITE $\mathcal{N}(0,1)$

$$\Pi(t) = P(T \le t) = \int_{-\infty}^{t} f(x) \, \mathrm{d}x$$

	0 <i>t</i>									
1	0,00	0,01	0,02	0,03	0,04	0,95	9,06	0,07	0,08	0,09
0,0	0,500 0	0,504 0	0,508 0	0,512 0	0,516 0	0,519 9	0,523 9	0,527 9	0,531 9	0,535 9
0,1	0,539 8	0,543 8	0,547 8	0,551 7	0,555 7	0,559 6	0,563 6	0,567 5	0,571 4	0,575 3
0,2	0,579 3	0,583 2	0,587 1	0,591 0	0,594 8	0,598 7	0,602 6	0,606 4	0,610 3	0,614 1
0,3	0,617 9	0,621 7	0,625 5	0,629 3	0,633 1	0,636 8	0,640 6	0,644 3	0,648 0	0,651 7
0,4	0,655 4	0,659 1	0,662 8	0,666 4	0,670 0	0,673 6	0,677 2	0,68 0 8	0,684 4	0,687 9
0,5	0,691 5	0,695 0	0,698 5	0,701 9	0,705 4	0,7088	0,7123	0,715 7	0,719 0	0,722 4
0,6	0,725 7	0,729 0	0,732 4	0,735 7	0,738 9	0,742 2	0,745 4	0,748 6	0,751 7	0,754 9
0,7	0,758 0	0,761 1	0,764 2	0,7673	0,770 4	0,773 4	0,776 4	0,779 4	0,782 3	0,785 2
0,8	0,788 1	0,791 0	0,793 9	0,796 7	0,799 5	0,802 3	0,805 1	0,807 8	0,810 6	0,813 3
0,9	0,815 9	0,818 6	0,821 2	0,823 8	0,825 4	0,828 9	0,831 5	0,834 0	0,836 5	0,838 9
1,0	0,841 3	0,843 8	0,846 1	0,848 5	0,850 8	0,853 1	0,855 4	0,857 7	0,859 9	0,862 1
1,1	0,864 3	0,866 5	0,868 6	0,870 8	0,872 9	0,874 9	0,877 0	0,879 0	0,881 0	0,883 0
1,2	0,884 9	0,886 9	0,888 8	0,890 7	0,892 5	0,894 4	0,896 2	0,898 0	0,899 7	6,9015
1,3	0,903 2	0,984 9	0,906 6	0,908 2	0,909 9	0,911 5	0,913 1	0,914 7	0,916 2	0,9177
1,4	0,919 2	0,920 7	0,922 2	0,923 6	0,925 1	8,926 5	0,927 9	0,929 2	0,930 6	0,9319
1,5	0,933 2	0,934 5	0,935 7	0,937 0	0,938 2	0,939 4	0,940 6	0,941 8	0,942 9	0,944 1
1,6	0,945 2	0,946 3	0,947 4	0,948 4	0,949 5	0,950 5	0,951 5	0,952 5	0,953 5	0,954 5
1,7	0,955 4	0,956 4	0,957 3	0,958 2	0,959 1	0,959 9	0,960 8	0,961 6	0,962 5	0,963 3
1,8	0,964 1	0,964 9	0,965 6	0,966 4	0,967 1	0,967 8	0,968 6	0,969 3	0,969 9	0,970 6
1,9	0,971 3	0,971 9	0,972 6	0,973 2	0,973 8	0,974 4	0,975 0	0,975 6	0,976 1	0,9767
2,0	8,977 2	0,977 9	0,978 3	0,978 8	0,979 3	0,979 8	0,980 3	0,980 8	0,981 2	0,981 7
2,1	0,982 1	0,982 6	0,983 0	0,983 4	0,983 8	0,984 2	0,984 6	0,985 0	0,985 4	0,985 7
2,2	0,986 1	0,986 4	0,986 8	0,987 1	0,987 5	0,987 8	0,988 1	0,988 4	0,988 7	0,989
2,3	0,989 3	0,989 6	0,989 8	0,990 1	0,990 4	0,990 6	0,990 9	0,991 1	0,991 3	0,991 6
2,4	0,991 8	0,992 0	0,992 2	0,992 5	0,992 7	0,992 9	0,993 1	0,993 2	0,993 4	0,993 6
2,5	0,993 8	0,994 0	0,994 1	0,994 3	0,994 5	0,994 6	0,994 8	0,994 9	0,995 1	0,995 2
2,6	0,995 3	0,995 5	0,995 6	0,995 7	0,995 9	0,996 0	0,9961	0,996 2	0,9963	0,9964
2,7	0,996 5	0,996 6	0,996 7	0,996 8	0,996 9	0,997 0	0,997 1	0,997 2	0,99 7 3	0,9974
2,8	0,997 4	0,997 5	0,997 6	0,997 7	0,997 7	0,997 8	0,9979	0,997 9	0,998 0	0,998 1
2,9	0,998 1	0,998 2	0,998 2	0,998 3	0,998 4	0,998 4	0,998 5	0,998 5	0,998 6	0,998 6

TABLE POUR LES GRANDES VALEURS DE t

1	3.0	3.1	3.2	3.3	3.4	3.5	3,6	3.8	4.0	4.5
									2 2 2 2 2 2 2	
ПО	0.998 65	0.999 04	0,999 31	0,999 52	0.999 66	0.999 76	0.999 841	0.999 928	0.999 968	0.999 997 1
	3,000	4,577.00		- · · · · · · · · · · · · · · · · · · ·						

Nota: $\Pi(-t)=1-\Pi(t)$